Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Energy ; 215:119153, 2021.
Article in English | ScienceDirect | ID: covidwho-893753

ABSTRACT

Europe’s capacity to explore the envisaged pathways that achieve its near- and long-term energy and climate objectives needs to be significantly enhanced. In this perspective, we discuss how this capacity is supported by energy and climate-economy models, and how international modelling teams are organised within structured communication channels and consortia as well as coordinate multi-model analyses to provide robust scientific evidence. Noting the lack of such a dedicated channel for the highly active yet currently fragmented European modelling landscape, we highlight the importance of transparency of modelling capabilities and processes, harmonisation of modelling parameters, disclosure of input and output datasets, interlinkages among models of different geographic granularity, and employment of models that transcend the highly harmonised core of tools used in model inter-comparisons. Finally, drawing from the COVID-19 pandemic, we discuss the need to expand the modelling comfort zone, by exploring extreme scenarios, disruptive innovations, and questions that transcend the energy and climate goals across the sustainability spectrum. A comprehensive and comprehensible multi-model framework offers a real example of “collective” science diplomacy, as an instrument to further support the ambitious goals of the EU Green Deal, in compliance with the EU claim to responsible research.

2.
Neth Heart J ; 28(7-8): 406-409, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-141765

ABSTRACT

BACKGROUND: In the battle against the SARS-CoV­2 pandemic, chloroquine has emerged as a new potential therapeutic option for the treatment of infected patients. A safety consideration for the application of chloroquine is its QTc-prolonging potential. Thus far, no data are available on the QTc-prolonging potential of chloroquine in COVID-19 patients. OBJECTIVE: To assess the degree of chloroquine-induced QTc prolongation in hospitalised COVID-19 patients. METHODS: A baseline electrocardiogram (ECG) and ECGs recorded during chloroquine treatment were retrospectively collected in patients suspected of having COVID-19. The QTc interval was calculated by computerised and manual interpretation. Baseline and follow-up QTc intervals were compared using the paired samples t-test. RESULTS: A total of 95 patients had a baseline ECG recording and at least one ECG recording during chloroquine therapy. Chloroquine treatment resulted in a mean QTc prolongation of 35 ms (95% CI 28-43 ms) using computerised interpretation and 34 ms (95% CI 25-43 ms) using manual interpretation. No torsade de pointes was observed during chloroquine treatment. After manual review, 22 patients (23%) had a QTc interval exceeding 500 ms during chloroquine treatment. None of these patients had a prolonged QTc interval prior to the initiation of chloroquine treatment. CONCLUSIONS: Chloroquine significantly prolongs the QTc interval in a clinically relevant matter. This highlights the need for ECG monitoring when prescribing chloroquine to COVID-19 patients.

SELECTION OF CITATIONS
SEARCH DETAIL